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How Does it Work?
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Bayes’ theorem is a relation between conditional 
probabilities that tells us how to update our 
beliefs about the likelihood of something given a 
new piece of evidence about it.

In order to apply Bayes’ theorem on a discrete set of simulated parameters, 
we must account for experimental error when computing likelihoods.

Finally, we iterate this process to 
update our posterior probability for 
each piece of observed evidence.

In this case, each hypothesis H is a 
particular combination of values of 
parameters and the evidence E is J(V, T, i)

• We first apply this approach to SnS solar cells [1] (device 
stack shown to the right), modeled using SCAPS-1D [2]

• Band offset is consistent with previous direct 
measurement and SRV had never before been measured

• Defect parameters (e.g. trap level and capture cross-sections) are 
notoriously difficult to measure directly

• To demonstrate the efficacy of the Bayesian approach, we demonstrate this 
initially for iron in silicon, an extremely well-characterized system

• Modeling the devices using PC1D [3], we fit one uncontaminated sample 
and one sample intentionally contaminated with a known level of interstitial 
iron, characterized in previous work [4]

• Further refinements could be made by including temperature dependence 
of capture cross-sections and resistances

• Work is ongoing to further subdivide the grid squares and run the inference 
on more measured data to further converge the fitted parameters
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Conclusions/Acknowledgements
• Bayesian inference is a promising approach to invert numerical device models and use simple, automated 

JVTi measurements to infer values of underlying physical parameters

• It offers the most physically relevant versions/components of these parameters (e.g. minority carrier 
mobility in the through-film direction)

• We demonstrate application of this approach to fit bulk and interface properties in SnS devices and SRH 
parameters of interstitial iron in Si devices

• This method has potential to dramatically accelerate the identification of performance-limiting factors in 
early-stage photovoltaic materials and devices and reduce the time and cost required to characterize and 
remedy them

This work would not have been possible without generous financial and computational support from:

Literature-reported ranges [5] for each parameter are shown in red for the contaminated sample (right).
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• Diffusion length (mobility-lifetime 
product) is well-constrained by fit

μe, τe in SnS bulk

ΔEc, Seff at SnS/Zn(O,S) interface

uncontaminated

contaminated

Best-fit values:
τn = 6.3 × 10-7 s
τp = 0.01 s
Et = -0.44

Best-fit values:
τn = 1.0 × 10-8 s
τp = 0.004 s
Et = 0.08

• There is a need to accelerate diagnosis of limiting factors in early-stage photovoltaic materials and devices

Materials 
properties
μ, τ, ΔE…

Numerical 
device model

(simulated) 
JVTi

(measured) 
JVTi

Bayesian 
Inference

usual workflow
our approach

• Direct measurement of relevant quantities (e.g. carrier 
mobility, trap energy level, etc.) can be difficult and/or 
subject to assumptions/models that may not apply in 
the materials under consideration

• However, by definition, all materials/device 
parameters that affect device performance have a 
measurable (and modelable) impact on JV 
characteristics – in our approach, we exploit this fact


